Chem. Ber. 116, 1643-1655 (1983)

Komplexe mit alkylsubstituierten Phosphinomethanen und -methaniden, V¹)

Isoelektronische pentakoordinierte Bis(dimethylphosphino)methan-Komplexe von Eisen(0), Cobalt(I) und Nickel(II)

Hans Heinz Karsch

Anorganisch-Chemisches Institut der Technischen Universität München, Lichtenbergstr. 4, D-8046 Garching

Eingegangen am 20. August 1982

Durch Ligandsubstitutionsreaktionen bilden sich die Komplexe $(Me_3P)_3(Me_2PCH_2PMe_2)M$ (3, 10, 12) und $(Me_3P)(Me_2PCH_2PMe_2)_2M$ (4, 6a, b, 11) $(M = Fe, Co^+, Ni^{2+})$ mit einer bzw. zwei Vierringchelateinheiten. Die letztere Anordnung ist wenig stabil: einer der beiden $Me_2PCH_2PMe_2$ -Liganden wird leicht durch 2 CO- (für M = Fe) bzw. 2 PMe_3-Liganden (Co⁺, Ni²⁺) substituiert. Die Stabilität der pentakoordinierten Komplexe nimmt in der Reihe Fe > Co > Ni ab, beim Nickel ist nur noch der tetrakoordinierte Komplex [($Me_2PCH_2PMe_2)_2Ni$]Cl₂ (8) isolierbar. Auch im analogen Komplex [[$(Me_2P)_3CH$]_2Ni]Cl₂ (9) hat Nickel die Koordinationszahl vier.

Complexes with Alkyl Substituted Phosphinomethanes and -methanides, V¹⁾

Isoelectronic Pentacoordinated Bis(dimethylphosphino)methane Complexes of Iron(0), Cobalt(I), and Nickel(II)

 $(Me_3P)_3(Me_2PCH_2PMe_2)M$ (3, 10, 12) and $(Me_3P)(Me_2PCH_2PMe_2)_2M$ (4, 6a, b, 11) complexes $(M = Fe, Co^+, Ni^{2+})$ containing one or two four-membered chelate rings are formed by ligand substitution. The latter arrangement turns out to be not very stable: one of the two $Me_2PCH_2PMe_2$ ligands is substituted easily by 2 CO (M = Fe) or 2 PMe_3 ligands (Co⁺, Ni²⁺). The stability of the pentacoordinated species decreases in the order Fe > Co > Ni, the only isolable nickel complex being tetracoordinated [(Me_2PCH_2PMe_2)_2Ni]Cl_2 (8). Nickel is also tetracoordinated in the analogous complex $[(Me_2P)_3CH]_2Ni]Cl_2 (9)$.

Wir berichteten über die Darstellung von $Me_2PCH_2PMe_2$ (= \widehat{PP})²⁾. Eines der Ziele dabei war, einige wünschenswerte Ligandeigenschaften zu kombinieren:

Hohe Brückenbildungsbereitschaft (zur Ausbildung von Metall-Metallbindungen) (a). Leichte Metallierbarkeit (b).

Sehr geringe sterische Anforderungen, d.h. kleiner Winkel α , um hohe Koordinationszahlen zu ermöglichen (c).

Hohe Ringspannung im Chelatvierring (um Substitutionsreaktionen zu erleichtern) (d).

© Verlag Chemie GmbH, D-6940 Weinheim, 1983 0009 – 2940/83/0404 – 1643 \$ 02.50/0 Mit Ph₂PCH₂PPh₂ sind in letzter Zeit viele verbrückte Diphosphinomethan-Komplexe (z. B. sog. "A-frame"-Komplexe³) dargestellt worden. Als Beispiel für verbrückte Me₂PCH₂PMe₂-Komplexe haben wir $[(\widehat{PP})LCO]_2PMe_2$ (L = PMe₃)⁴) und $[(\widehat{PP})Ag]_2(PF_6)_2^{5})$ beschrieben. Diphosphinomethanid-Komplexe werden in jüngster Zeit ebenfalls in wachsender Zahl untersucht⁶), methylsubstituierte Systeme haben wir kürzlich erstmals dargestellt^{1,7,8}). Der Ersatz der Phenyl- gegen Methylsubstituenten sollte besonders bei (c) entscheidend sein. Über isoelektronische Komplexe der d⁸-Reihe Eisen(0), Cobalt(I) und Nickel(II) wird in dieser, über isoelektronische Methylcobalt(III)- und -eisen(II)-d⁶-Komplexe in der nachfolgenden Arbeit⁹) berichtet.

Darstellung und Eigenschaften der Me₂PCH₂PMe₂-Komplexe

A. (Me₂PCH₂PMe₂)Cr(CO)₄ (1)

Der Komplex 1 wurde nach Gleichung (1) dargestellt. Die gelben, mäßig luftempfindlichen Kristalle sind gut in CH_2Cl_2 löslich. Sie sind durch Sublimation (120°C/0.1 Torr) rein zu erhalten. Die v(CO)-Valenzschwingungen sind vergleichend mit denen von analogen Komplexen in Tab. 1 zusammengestellt.

$$Me_2PCH_2PMe_2 + Cr(CO)_6 \xrightarrow{h \cdot \nu} (Me_2PCH_2PMe_2)Cr(CO)_4 + 2 CO$$
(1)
1

cis-L ₂ Cr(CO) ₄ L ₂	A_1^2	A	B ₁	B ₂	Solvens	Lit.
Me ₂ PCH ₂ PMe ₂	2000 st	1905 st	1877 sst	1869 Sch	CH ₂ Cl ₂	_
	(2001 st	1901 sch	1873 sst	1866 Sch	CHCl,	10)
$L = PMe_3$	₹ 2006.2	1911.2	1891.6	1881.3	Hexadecan	11)
5	2000m	1890 sch	1876 st	1858 Sch	Cyclohexan	12)
Ph ₂ PCH ₂ PMe ₂	2007	1923	1895	– Sch	Cyclohexan	13)
Ph ₂ PCH ₂ PPh ₂	(2020	1931	1913	1898	Cvclohexan	13)
	2006 st	1915 st	1897 sst	1875 s	CICH ₂ CH ₂ CI	14)
Ph ₂ PCH ₂ CH ₂ PPh ₂	2009 st	1914 st	1899 sst	1877 st	ClCH ₂ CH ₂ Cl	14)
Et ₂ PCH ₂ CH ₂ PEt ₂	2000 st	1905 st	1880 sst	– Sch	CICH ₂ CH ₂ CI	14)

Tab. 1. $v(C \equiv O)$ [cm⁻¹] von 1 und Vergleichskomplexen

Nach diesen Daten kommt 1 dem *cis*- $(Me_3P)_2Cr(CO)_4$ am nächsten, d.h. in elektronischer Hinsicht sind PMe₃ und Me₂PCH₂PMe₂ in einfachen Komplexsystemen nahezu äquivalent und deshalb in sterischer Hinsicht zu vergleichen¹⁵⁾. Mit den Liganden PMe₃/Me₂PCH₂PMe₂ können jetzt erstmals analog gebaute Pentakis(phosphan)eisen(0)-, -cobalt(I)- und -nickel(II)-Komplexe untersucht werden. Bei diesen d⁸-Komplexen ist die Koordinationszahl (4 oder 5) in einem vorgegebenen Rahmen von den sterischen Gegebenheiten abhängig.

B. PMe₃/Me₂PCH₂PMe₂-Komplexe von Fe⁰, Co^I, Ni^{II}

Tetrakis(trimethylphosphan)eisen (2) (das in Lösung vorwiegend als Hydridoeisen(II)-Komplex vorliegt¹⁶) reagiert mit $Me_2PCH_2PMe_2$ langsam zu dem pentakoordinierten Eisen(0)-Komplex 3 [Gl. (2b)]¹⁷). $L_4Fe'' + PMe_3 \longrightarrow (Me_3P)_5Fe$ (2a)

Dagegen läßt sich ein Komplex $(Me_3P)_5$ Fe nicht isolieren ¹⁶). Erst kürzlich wurden mit $(Me_2PCH_2CH_2PMe_2)_2(PR_3)$ Fe die ersten Pentakis(organophosphan)eisen(0)-Komplexe beschrieben ¹⁸). **3** ist damit der erste derartige Komplex mit drei einzähnigen Phosphanliganden. Er kristallisiert aus der Reaktionslösung in dunkelroten Nadeln aus. Mit überschüssigem Diphosphinomethan findet langsam wieder eine Farbaufhellung statt, beim Abkühlen kristallisieren orangefarbene würfelförmige Kristalle von **4**.

(Auch ein pentakoordinierter Komplex $(Me_2PCH_2PMe_2)_2Fe(Me_2PCH_2PMe_2)$ ist isolierbar, hierüber wird an anderer Stelle berichtet⁸).) Alle diese koordinativ gesättigten Komplexe zeigen keine Neigung, durch oxidative Cyclometallierung in Hydridoeisen(II)-Komplexe zu isomerisieren, wie es für koordinativ ungesättigte Tetrakis(phosphan)eisen(0)-Komplexe nachgewiesen ist^{8,16,18,19,20}. Die umgekehrte Reaktion einer reduktiven Eliminierung von L₃(H)Fe(Me₂PCHPMe₂) zu 3 haben wir kürzlich beschrieben⁷).

Den zu 4 isoelektronischen kationischen Cobalt(I)-Komplex 6 erhält man nach (4) direkt, ohne daß sich eine Zwischenstufe fassen läßt.

Bisher sind erst zwei Pentakis(organophosphan)cobalt(I)-Komplexe bekannt: $[(Me_3P)_4(Me_2PH)Co]Cl^{21}$ und $\{(Me_3P)_3[(Me_2P)_2CPMe_3]Co\}PF_6^{22}$. Die orangefarbenen, in THF schwer, in Aceton oder Methanol gut löslichen Komplexe **6a**, **b** entstehen sofort bei der Zugabe von Me_2PCH_2PMe_2 zur Reaktionslösung als relativ schwerlösli-

che Niederschläge. Das Chlorid ist in Lösung instabil, es zerfällt in THF langsam in einer Disproportionierungsreaktion $(5)^{4,8}$. Das Hexafluorophosphat **6b** ist dagegen auch in THF-Lösung stabil.

Ebenso wie beim Cobaltkomplex fällt auch bei Zugabe von $Me_2PCH_2PMe_2$ zu L_2NiCl_2 sofort ein orangefarbener Komplex aus, der sich aber nicht als pentakoordinierter, sondern als quadratisch-planarer Nickel(II)-Komplex 8 erweist.

Auch bei Unterschuß an $Me_2PCH_2PMe_2$ entsteht 8 infolge seiner Schwerlöslichkeit in Ether. Auch in THF oder Aceton ist 8 schwer, in Methanol und Wasser aber leicht löslich.

Schema 1. Isoelektronische Fe⁰/Co¹/Ni¹¹-Komplexe mit Me₃P/Me₂PCH₂PMe₂-Liganden (L/PP)

Chem. Ber. 116 (1983)

Demnach bevorzugt das Nickel(II)-System die Koordinationszahl vier. Ein Pentakis-(phosphan)nickel(II)-Komplex konnte bisher nicht isoliert werden, doch wurde $(Me_3P)_5Ni^{2+}$ als BF_4^- -Salz (bei – 159°C) spektroskopisch nachgewiesen²³⁾. Mit anderen, ebenfalls sterisch "günstigen" Diphosphanliganden wie $Ph_2PCH_2PPh_2$ und $Me_2PCH_2CH_2PMe_2$ sind bisher ebenfalls nur Nickelkomplexe der Koordinationszahl 4 beschrieben²⁴⁾. Auch mit dem potentiell dreizähnigen Liganden (Me₂P)₃CH²⁵⁾ erhält man nur einen quadratisch-planaren Komplex 9 [Gl. (7)]. (Me₂P)₃CH fungiert demnach wie (Me₂P)₂CH₂ nur als zweizähniger Ligand, je eine Phosphanfunktion bleibt "frei". Die Farbe und die Lösungseigenschaften von 9 entsprechen denen von 8.

Die Reaktionen nach Gl. (2), (3) und (5) zeigen ein ganz unterschiedliches Verhalten der Fe⁰-, Co¹- und Ni¹¹-Systeme gegenüber $Me_2PCH_2PMe_2$. Das Bild wird aber bei einer NMR-spektroskopischen Untersuchung in Gegenwart von PMe₃ einheitlicher, die Ergebnisse sind in Schema 1 dargestellt.

Gibt man PMe₃ zu Acetonlösungen des Cobaltkomplexes **6a**, so beobachtet man eine Farbvertiefung (orange \rightarrow rot). Das NMR-Spektrum (s. u.) zeigt, daß jetzt der zum Eisenkomplex 3 isoelektronische Komplex [L₃(\widehat{PP})Co]Cl **10** vorliegt, daneben findet sich ein Signal für freies Me₂PCH₂PMe₂ mit der passenden Intensität. Auch beim Zusatz von 1 Äquivalent PMe₃ zu Methanollösungen des Nickelkomplexes 8 beobachtet man eine Farbvertiefung nach orangerot. Diese Farbe kommt dem zum Eisen- und Cobaltsystem analogen **11** zu (s. Abb. 1a). Weiterer PMe₃-Zusatz vertieft die Farbe erneut (dunkelrot), es liegt jetzt das ebenfalls beim Eisen und Cobalt seine Entsprechung findende **12** vor. Auch hier wird das Signal für freies Me₂PCH₂PMe₂ mit der richtigen In-

Abb. 1. ³¹P{¹H}-Spektrum (36.43 MHz, -50°C, CD₃OD) von [(PP)₂Ni]Cl₂ (8)

 a) Zusatz von PMe₃: 1.5-fach [→ 11 + 12 + PP (3:1:1)]
 b) Zusatz von PMe₃: Überschuß [→ 12 + PP (1:1) + überschüssiges L]

tensität gefunden - s. Abb. 1b. Überschüssiges PMe₃ ist für diese Reaktion nicht erforderlich.

Die nach NMR-Befunden wie 3 fluktuierenden 10 und 12 lassen sich ebensowenig isolieren wie das bei tieferen Temperaturen (ebenso wie 4 und 6) starre, quadratischpyramidale 11, da beim Abziehen des Acetons bzw. Methanols oder Ausfällen mit Pentan oder Ether nur wieder die Komplexe 6 bzw. 8 erhalten werden, ein Verhalten, das offensichtlich von den Löslichkeitsverhältnissen kontrolliert wird. Dabei sind 11 und 12 die ersten Pentakis(phosphan)nickel(II)-Komplexe in Gegenwart von koordinationsbereiten Anionen (z. B. Cl⁻).

In Methanollösung läßt sich ein weiterer quadratisch-planarer Komplex, 13, nachweisen, der nach Gl. (8a) gebildet wird.

Die orangerote Lösung von 13 wird auf Zusatz von PMe₃ wieder in eine von 12 übergeführt, Gl. (8b). Analog läßt sich nach Gl. (9) mit $(Me_2P)_3$ CH der Komplex 14 darstellen.

Bei entsprechender Stöchiometrie verlaufen die Reaktionen nach Gl. (8) und (9) gemäß den ³¹P{¹H}-NMR-Spektren quantitativ. Konkurrenzreaktionen von 13 und 7 in Gegenwart von überschüssigem PMe₃ zeigen dabei, daß die Tendenz von 13 zur Pentakoordination geringer ist: es wird zuerst nur L₃NiCl₂ gebildet. Die Komplexe 13 und 14 sind ebensowenig wie 10, 11 oder 12 isolierbar. Das Gleichgewicht (10) liegt in Methanol zwar ganz auf der linken Seite, wird aber z. B. beim Abziehen des Lösungsmittels (infolge größerer Flüchtigkeit von L gegenüber \overrightarrow{PP} und geringerer Löslichkeit von 8/9 gegenüber 13/14) ganz nach rechts verschoben, was die in diesem System typischen, schnellen Ligandaustauschprozesse belegt.

$$2 \times 13,14 \xrightarrow{\text{CH}_{3}\text{OH}} 8,9 + L_2 \text{NiCl}_2 + 2 \text{L}$$
 (10)

Bei diesen immer eindeutig in eine Richtung verlaufenden Vorgängen treten offensichtlich nur die hypothetischen Komplexe $[(Me_2P)_2CH_2]NiCl_2/[(Me_2P)_3CH]NiCl_2$ (**8a/9a**) nicht auf, d. h. gemäß Gl. (10) bilden sich **13/14** nur aus **8/9** und L₂NiCl₂, wenn PMe₃ zugegen ist. Zusammen mit den Gleichungen (8)/(9) und (10) ergibt sich, daß **8/9** als tetrakoordinierte Komplexe mit zwei Vierringchelateinheiten in Lösung nur dann vorliegen, wenn (aus stöchiometrischen Gründen) keine andere Möglichkeit (außer **8a/9a**) verbleibt, d.h. auch im tetrakoordinierten Fall scheint die Kombination zweier Chelatvierringe wenig günstig zu sein.

Die Verdrängungsreaktionen des Diphosphans Me₂PCH₂PMe₂ durch PMe₃ am Nickel und Cobalt (am Eisen verlaufen Substitutionen mit Phosphanen sehr langsam)

signalisieren einen destabilisierenden Effekt dieser Anordnung sogar gegenüber elektronisch ähnlichen, einzähnigen Liganden²⁶⁾.

Ein solches Verhalten wurde u. W. bisher nicht gefunden und beansprucht besonderes Interesse für Substitutions- und Katalysereaktionen. Wenn auch eine entsprechende Beobachtung am Eisenkomplex 4 mit PMe_3 nicht gemacht wird, so zeigt sich auch hier ein ähnlicher Einfluß in der Reaktion mit CO [Gl. (11)].

Hierbei wird nicht etwa PMe₃, sondern der Chelatligand Me₂PCH₂PMe₂ substituiert. Der erhaltene Komplex ist auch insofern interessant, als sich hierbei die Pseudorotation – erstmals für einen Dicarbonyltris(phosphan)eisen-Komplex²⁷⁾ – einfrieren läßt, und damit die trigonal-bipyramidale Anordnung auch NMR-spektroskopisch zu erkennen gibt (s. exp. Teil). Wir konnten **15** jedoch nicht völlig frei von Verunreinigungen erhalten.

Spektroskopische Untersuchungen

Massenspektren wurden vom Chromkomplex 1 und den kovalenten Eisenkomplexen 3, 4 und 15 aufgenommen, wobei der Molekülpeak (s. exp. Teil) jeweils das monomere Strukturprinzip bestätigt. Die *Infrarotspektren* stimmen bei 4 und 6a, b nahezu überein, auch 3 und 8 sowie 9 haben sehr ähnliche Spektren. Eine v(M – Cl)-Valenzschwingung wird, entsprechend der ionischen Formulierung, nicht gefunden. Charakteristisch ist bei allen Komplexen eine scharfe δ CH₂- (bzw. δ CH- bei 9)-Schwingung der Brückenmethylengruppe des Diphosphinomethan-Liganden im Bereich zwischen 1100 und 1050 cm⁻¹.

NMR-Spektren

Konstitutionsbeweisend sind vor allem die ¹H- und ³¹P-NMR-Spektren (Tab. 2, 3 und exp. Teil).

Das ¹*H-NMR-Spektrum* von 1 entspricht mit zwei Tripletts für die CH_2 - und CH_3 -Protonen den Erwartungen, wobei letzteres zum Typ eines symmetrischen $X_nAA'X'_n$ -Spinsystems²⁸⁾ gehört (s. exp. Teil).

Die quadratisch-planare Anordnung von vier äquivalenten Me₂P-Einheiten am Nickel(II) in **8** macht sich überraschenderweise sowohl für die PCH₃- als auch die PCH₂-Protonen in je einem (1:4:6:4:1)-Quintett (s. Abb. 2a) bemerkbar ($\{^{31}P\}$: zwei Singuletts 1:6), wobei N (= Abstand der äußeren Linien) jeweils etwa den doppelten Wert vom *N*-Wert der Triplettsignale bei (\widehat{PP})Cr(CO)₄ (1) (s.o.) annimmt²⁹.

Die "Störung" durch je eine weitere Me₂P-Gruppe in **9** äußert sich in einer weiteren Aufspaltung der Signale der nun nicht mehr gleichen CH₃P-Substituenten [zwei Quintetts, $\{^{31}P\}$: zwei Singuletts (1:1)], während die "freie" Me₂P-Gruppe als Dublett mit der üblich kleinen Aufspaltung von Methylphosphanen erscheint. Das C-H-Proton läßt nur die Kopplung zu den beiden komplexgebundenen Phosphoratomen erkennen

(s. Abb. 2b). Die nahezu (bis auf die Intensitäten) gleichen Methylphosphor-Resonanzen weisen 4 bei 0° C, 6 bei -40° C und 11 bei -80° C auf, wobei die "Störung" jetzt vom axialen PMe₃-Liganden im so als quadratisch-pyramidal festgelegten Komplex hervorgerufen wird. Allerdings sind die Quintettaufspaltungen infolge Signalverbreiterung nur bei 6 deutlich zu erkennen. Ebenso sind bei allen Komplexen (4, 6 und 11) für die Phosphormethylenprotonen nur breite Signale ohne Feinstruktur zu beobachten (Abb. 3).

Bei höherer Temperatur setzt eine Ligandenbewegung ein, die, abgestuft nach Ni > Co > Fe bei - 70, - 30 und + 30°C wirksam wird. Dadurch wird die Aufspaltung der Signale der CH₃P-Gruppe des Me₂PCH₂PMe₂-Liganden aufgehoben (nur noch ein breites Signal, Abb. 3), während die PMe₃-Resonanz unverändert und lagekonstant bleibt. Eine Pseudorotation scheint dieses Verhalten am besten erklären zu können, wobei der Mechanismus (z.B. Berry- oder Turnstile-Rotation³⁰) offen bleibt. (Disso-

Nr.	Komplex	Solvens	Temp. [°C]	δPCH ₃ (PP) (N) ^{a)}	δPCH_2 ($N/^2 J(PCH)$)	δPCH ₃ (L) (<i>N</i> / ² <i>J</i> (PCH))
8		CD ₃ OD	+ 30	+ 2.14 ,quin' (9.9) ^{a)}	+ 3.58 ,quin' (20.8) ^{a)}	
9 [F	$\left(\left(\left$	CD3OD	±0	+ 2.01 ,quin' (8.7) ^{a)} + 1.87 ,quin' (8.7) ^{a)}	+ 3.88 t ^{b)} (6.7)	+ 1.33 d ^{c)} (3.6)
11	$\left[\begin{pmatrix} \mathbf{P} & \mathbf{L} & \mathbf{P} \\ \mathbf{P} & \mathbf{N} & \mathbf{P} \end{pmatrix} \right]^{2^{*}}$	CD ₃ OD	- 35	+ 2.13 s (br)	+ 3.20 m (br)	+1.78 d
		CD ₃ OD	- 90	+ 2.32 s (br) + 1.95 s (br)	+ 3.20 m (br)	+ 1.78 d (5.0)
6	$\left[\left(P \right)^{L} \left(P \right)^{\dagger} \right]^{\dagger}$	[D ₆]Aceton	+ 30	+ 1.71 s (br)	+3.14 m (br)	+ 1.68 d (5.9)
		[D ₆]Aceton	- 40	+ 1.92 ,quin' (8.7) ^{a)} + 1.50 ,quin' (8.7) ^{a)}	+3.14 m (br)	+ 1.68 d (5.9)
4 [($\begin{bmatrix} P \\ P \\ P \\ P \end{bmatrix}$	[D ₈]Toluol	+75	+1.35 s (br)	+ 3.03 m (br)	+1.48 d (4.5)
		[D ₈]Toluol	±0	+ 1.54 s (br) + 1.18 s (br)	+ 3.03 m (br)	+ 1.51 d (4.9)
12	[L ₃ (P P)Ni] ²⁺	-			d)	
10	[L ₃ (PP)Co] ⁺	-			d)	
3	[L ₃ (PP)Fe]	[D ₈]Toluol	+ 30e)	+ 1.25 ,t' ^{a,g)} (7.8)	$+2.68 t \cdot q^{f}$ (11.7)	1.19 ,m ^{•a,g)} (5.0)

Tab. 2. ¹H-NMR-Daten (δ in ppm, J in Hz, TMS ext.) von Me₂PCH₂PMe₂/PMe₃ \acute{P} /L)-d⁸-Komplexen [Fe⁰/Co¹/Ni^{II}]

a) Pseudomultipletts, t^t, ,quin^t, ,m^t der symmetrischen H_xPP'H_x'Systeme mit $N = |{}^{2}J(PCH) + {}^{4}J(PCH)| = Abstand der äußeren Linien. - b) \delta PCH. - c) \delta PCH₃ von PMe₂. - d) Nicht ausgewertet, da von freigesetztem Me₂PCH₂PMe₂ und überschüssigem PMe₃ überlagerte Signale, s. Text. - e) Unverändert bis - 100°C. - <math>{}^{6}J(PFePCH) \approx 1$ Hz. - g) Werte wegen Signalüberlagerung unsicher.

ziationsphänomene sind aber nicht völlig auszuschließen, da obige Reihe auch im Einklang mit der erwarteten Stabilität der Pentakoordination steht.) Die relativ "starre" Konformation an diesen pentakoordinierten Komplexen steht im Gegensatz zum Verhalten der oben erwähnten ($Me_2PCH_2CH_2PMe_2$)₂(PR₃)Fe⁰-Komplexe, die als "non rigid" beschrieben sind¹⁸.

Das ¹H-NMR-Spektrum von 3 entspricht für den $Me_2PCH_2PMe_2$ -Teil wieder dem gleichen Bild wie beim oben besprochenen Chromcarbonylkomplex 1, das teilweise vom komplexen, symmetrischen Multiplett des PMe₃-Liganden überlagert ist. Das

Abb. 2. ¹H-NMR-Spektren (60 MHz, TMS ext., 0°C, D_2O , J bzw. N in Hz) von a) 8 b) 9

Abb. 3. ¹H-NMR-Spektren (60 MHz, TMS ext., $(CD_3)_2CO$, J bzw. N in Hz) von 6 Chem. Ber. 116 (1983)

Spektrum ist nur wenig temperaturabhängig, das fluktuierende Verhalten wird im ³¹P-NMR-Spektrum offensichtlich.

³¹P-NMR-Spektren

Bei allen diesen d⁸-Komplexen sowie beim Chromkomplex 1 ist die Resonanz des $Me_2PCH_2PMe_2$ -Chelatliganden gegenüber z.B. der Resonanz von komplexgebundenem PMe₃ beträchtlich nach höherem Feld verschoben, wobei z.T. auch die chemische Verschiebung von letzterem bei relativ hohem Feld erscheint. Diese Hochfeldverschiebung nimmt in der Reihe Fe⁰ < Co¹ < Ni¹¹ zu und ist typisch und diagnostisch für Vierringe³¹⁾. Für 3 nimmt die Diphosphinomethan-Resonanz temperaturabhängig die Form eines Quartetts an, die des PMe₃-Liganden erscheint als Triplett entsprechend einem A₂B₃-Spinsystem. Ein solches Spinsystem findet sich auch bei 12 (s. Abb. 1b), beim isoelektronischen Cobaltkomplex 10 ist ²J(PP) offensichtlich so klein, daß nur Singuletts (3:2) resultieren. Da keines der denkbaren idealen Koordinationspolyeder für dieses System einem solchen A₂B₃-Spektrentyp entspricht, nehmen wir eine nicht starre Konfiguration dieser [L₃(PP)M]-Komplexe in Lösung an, deren Tieftemperaturlimit nicht ermittelt werden konnte.

Tab. 3. ${}^{31}P_{1}^{(1}H_{1}^{1}-NMR-Daten (\delta in ppm, J in Hz, H_{3}PO_{4} ext.) von Me_{2}PCH_{2}PMe_{2}-Fe^{0}-, -Co^{1}-und -Ni^{11}-Komplexen 3, 4, 6, 8-12 (L = PMe_{3}, PP = Me_{2}PCH_{2}PMe_{2})$

Nr.	Solvens	Temp. [°C]	δP_{PP}	δΡ _L	² J(PP)
8	CD ₃ OD	+ 20	- 46.1	_	_
9	CD ₃ OD	+ 20 ^{a)}	- 35.0 s (2 P)	(-50.3 s (1P)) ^{b)}	<3
11	CD ₃ OD	- 70	- 39.5 s (4 P)	- 31.1 s (1 P)	<3
6	[D ₆]Aceton	- 100	– 19.9 d (4P)	– 6.2 (br) (1 P)	9.1
4	[D ₈]Toluol	+ 30	– 11.5 d (4P)	+ 9.1 quin (1 P)	6.1
12	CD ₃ OD	- 90	-48.8 q (2P)	– 16.3 t (3P)	42.7
10	[D ₆]Aceton	- 100	-35.0 s (2P)	-3.3 s (3P)	< 3
3	[D ₈]Toluol	- 50	– 22.2 q (2P)	+13.3 t (3P)	18.3

a) Unverändert bei - 80°C. - b) - PMe₂ "frei".

Im Gegensatz hierzu besteht das ³¹P(¹H}-NMR-Spektrum (0°C) von 4 aus einem Quintett (1P) und einem Dublett (4P) für den PMe₃- bzw. die Me₂PCH₂PMe₂-Liganden entsprechend einem AB₄-Spin-System (²J(PP) = 6.1 Hz).

Ebenfalls AB₄-Spinsysteme repräsentieren die Spektren des Cobaltkomplexes 6 und des Nickelkomplexes 11 nach Zusatz von PMe₃ zum quadratisch-planaren 8 (Singulett), jedoch ist bei 11 die ${}^{2}J(PP)$ -Kopplung offensichtlich noch kleiner (≈ 0 Hz: zwei Singuletts 1:4). Auch beim Cobaltkomplex ist diese Kopplung nur am intensitätsstärkeren Dublettsignal abzulesen. Nicht entscheiden läßt sich an Hand des Phosphorspektrums (im Gegensatz zu ¹H-NMR s.o.), ob jeweils starre (\triangleq tetragonale Pyramide) oder fluktuierende Systeme vorliegen. Keine Kopplung läßt sich auch beim Tris(phosphino)methannickel-Komplex 9 zwischen jeweils den beiden komplexgebundenen und dem

"freien" Me₂P-Phosphoratom erkennen, so daß zwei Singuletts (2:1) resultieren. Auch bei tiefer Temperatur läßt sich keine Wechselwirkung dieser freien Me₂P-Funktionsgruppe und dem Nickelatom erkennen, d.h. als dreifüßiger Chelatligand scheint $(Me_2P)_3CH$ im Ni^{II}-System wenig geeignet (analog 14).

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danke ich für die Unterstützung dieser Arbeit.

Experimenteller Teil

Arbeitstechnik und Geräte wurden schon früher beschrieben²²⁾.

Tetracarbonyl[methylenbis(dimethylphosphan)]chrom (1): 1.0 g Cr(CO)₆ (4.55 mmol) werden zusammen mit 0.72 g (5.15 mmol) Me₂PCH₂PMe₂ in 40 ml THF 8 h bestrahlt (Labortauchlampe TQ 150, Fa. Hanau). Die gelbe Lösung wird zur Trockene gebracht, der Rückstand in CH₂Cl₂ gelöst und über eine 1-m-Säule (\emptyset 0.7 cm, Kieselgel) eluiert. Das erste Eluat (Hauptmenge) wird eingeengt und Ether zugefügt. Durch Kühlen werden gelbe Kristalle gefällt, Sublimation bei 120°C/0.1 Torr: 850 mg (62%), Schmp. 158°C. – MS: $m/e = 300 (M^+)$. – ¹H-NMR (CDCl₃, TMS ext., + 30°C): δ PCH₃ = +2.13 "t" (6H, N = 9.0 Hz); δ PCH₂ = +3.73 t (1H, ²J(PCH) = 10.1 Hz). – ³¹P₁⁽¹H₁-NMR (H₃PO₄ ext.): $\delta = +1.2$.

C₉H₁₄CrO₄P₂ (300.2) Ber. C 36.02 H 4.70 Gef. C 36.11 H 4.77

[Methylenbis(dimethylphosphan)]tris(trimethylphosphan)eisen (3): Eine konz. Lösung von 2^{16}) versetzt man mit 1 Äquiv. Me₂PCH₂PMe₂ in Toluol/Pentan (1:5) oder Ether und läßt 1 Woche bei Raumtemp. stehen, wobei dunkelrote Nadeln auskristallisieren. Das Lösungsmittel wird dekantiert, die Kristalle werden bei tiefer Temperatur mit Pentan gewaschen und i. Vak. getrocknet. Zers. > 80 °C. – MS: m/e = 420 (M⁺).

C₁₄H₄₁FeP₅ (420.2) Ber. C 40.02 H 9.84 Gef. C 39.87 H 9.76

Bis[methylenbis(dimethylphosphan)](trimethylphosphan)eisen (4): Wie vorstehend erhält man mit überschüssigem Me₂PCH₂PMe₂ nach 3 Wochen orangefarbene Kristalle. Zers. > 105° C (Subl. 90°C/0.1 Torr). – MS: m/e = 404 (M⁺).

C13H37FeP5 (404.2) Ber. C 38.64 H 9.23 Gef. C 38.61 H 9.31

Bis[methylenbis(dimethylphosphan)](trimethylphosphan)cobaltchlorid (**6a**): 0.85 g L₃CoCl²¹) (2.64 mmol) in 50 ml THF werden bei 0°C mit 0.72 g Me₂PCH₂PMe₂ (5.29 mmol) versetzt. Man rührt 10 min, filtriert schnell und kühlt die Lösung auf -78°C. Zunächst erhält man grüne Kristalle, die sich analytisch als L₂(Me₂PCH₂PMe₂)CoCl₂^{4,8}) identifizieren lassen. Die orangefarbene Restlösung wird bei -10°C eingeengt, 10 ml Ether werden zugefügt, dann wird wieder auf -78°C gekühlt: es wachsen kleine orangefarbene Kristalle, 362 mg (31%), Zers. > 65°C.

C13H37ClCoP5 (442.7) Ber. C 35.27 H 8.42 Gef. C 35.59 H 8.34

Bis[methylenbis(dimethylphosphan)](trimethylphosphan)cobalt-hexafluorophosphat (**6b**): Geht man von [L₄Co]PF₆²²⁾ aus und arbeitet wie bei **6a**, so ist die resultierende orangefarbene Lösung bei Raumtemp. stabil, man erhält daraus mit 83% Ausb. **6b**, Zers. > 115 °C.

C13H37CoF6P6 (552.2) Ber. C 28.28 H 6.75 Gef. C 28.25 H 6.81

6a/6b werden auch erhalten, indem man die Komplexe aus einer etherischen Lösung/Suspension von L₃CoCl bzw. $[L_4Co]PF_6$ mit Me₂PCH₂PMe₂ ausfällt.

Bis[methylenbis(dimethylphosphan)]nickeldichlorid (8): Zu einer Lösung von 1.2 g L_2NiCl_2 (4.26 mmol) in 50 ml Ether werden 1.2 g Me₂PCH₂PMe₂ (8.82 mmol) pipettiert. Man rührt 1 h,

dann wird der orangefarbene Niederschlag auf einer Fritte gesammelt, zweimal mit Ether (je 50 ml) gewaschen und i. Vak. getrocknet, Ausb. 1.42 g (83%), Schmp. 210-215 °C (Zers.).

Bis[methylidintris(dimethylphosphan)]nickeldichlorid (9): Bei zu 8 analoger Arbeitsweise werden 85% 9 erhalten, Schmp. 125 - 135 °C (Zers.).

C14H38Cl2NiP6 (521.9) Ber. C 32.22 H 7.34 Gef. C 31.95 H 7.27

[Methylenbis(dimethylphosphan)]tris(trimethylphosphan)cobaltchlorid (10), Bis[methylenbis-(dimethylphosphan)](trimethylphosphan)nickeldichlorid (11) und [Methylenbis(dimethylphosphan)]tris(trimethylphosphan)nickeldichlorid (12) wurden nur spektroskopisch nachgewiesen durch Zusatz von PMe₃ zu **6a** bzw. **8** in Lösung. Eine Isolierung gelingt nicht, beim Abziehen des Lösungsmittels bildet sich der Ausgangskomplex zurück.

[Methylenbis(dimethylphosphan)]bis(trimethylphosphan)nickeldichlorid (13) und [Methylidintris(dimethylphosphan)]bis(trimethylphosphan)nickeldichlorid (14) erhält man durch stöchiometrischen Zusatz von Me₂PCH₂PMe₂ bzw. (Me₂P)₃CH zu einer Methanollösung von L₂NiCl₂, doch lassen sie sich ebenfalls nicht isolieren. Abziehen des Methanols ergibt einen Rückstand von L₂NiCl₂ und 8 bzw. 9 (¹H, ³¹P-NMR). L₂NiCl₂ läßt sich mit THF herauslösen, 8 bzw. 9 werden rein erhalten. Eine stöchiometrische Mischung aus L₂NiCl₂ und 8 bzw. 9 (z. B. obiger Rückstand) bildet in Methanol auf Zusatz von PMe₃ ebenfalls 13 und 14. Diese werden NMR-spektroskopisch charakterisiert:

13 (${}^{31}P_{1}^{(1}H_{1}^{1}$, 36.43 MHz, H₃PO₄ ext., -75 °C): AA'BB' (scheinbar "einfaches" Erscheinungsbild, dem nur unvollständige Daten zu entnehmen sind): $\delta P_{L} = -11.0$ "d"; $\delta P_{\widehat{PP}} = -51.2$ "d" ("J" = 149.2 Hz)).

14 (³¹P₄⁽¹H₁¹, 36.43 MHz, H₃PO₄ ext., −75 °C): AA'BB' (ähnlich 13, wie bei 9 keine erkennbare Kopplung mit der "freien" PMe₂-Gruppe): $\delta P_L = -12.0$ "t", $\delta P_{P_3CH,geb^{4}} = -42.3$ "t" ("J" = 76.3 Hz); $\delta P_{P_3CH,geb^{4}} = -47.5$ s).

Dicarbonyl[methylenbis(dimethylphosphan)](trimethylphosphan)eisen (15): 0.8 g 4 werden in 15 ml Pentan unter 1 atm. CO gelöst. Nach 24 h wird die Lösung filtriert und auf ein kleines Volumen eingeengt. Von den durch Kühlen erhaltenen orangegelben Kristallen wird dekantiert, die Kristalle werden i. Vak. getrocknet. Die Mutterlauge wird i. Vak. abgezogen. Zurück bleibt ein orangefarbenes Öl, das neben Me₂PCH₂PMe₂ noch unidentifizierte Produkte enthält. Auch der kristalline Feststoff ist nicht völlig rein, läßt sich aber spektroskopisch als 15 identifizieren. – MS: $m/e = 324 (M^+)$. – IR (Nujol): 1870 st, 1805 sst cm⁻¹ (C \equiv O). – ³¹P₁⁽¹H]-NMR ([D₈]Toluol, H₃PO₄ ext.), +30°C: $\delta P_{(\widehat{PP})} = -6.01 d$, $\delta P_L = +37.90 t (^2J(PP) = 21.2 Hz)$; –100°C: $\delta P_{(\widehat{PP})} = -18.8$ und +17.0 (jeweils breit, unaufgelöst), $\delta P_L = +45.3 d (42.7 Hz)$.

C10H23FeO2P3 (324.1) Ber. C 37.06 H 7.15 Gef. C 38.42 H 7.42

¹⁾ IV. Mitteil.: *H. H. Karsch,* Angew. Chem. **94**, 923 (1982); Angew. Chem., Int. Ed. Engl. **21**, 921 (1982).

²⁾ H. H. Karsch und H. Schmidbaur, Z. Naturforsch., Teil B 32, 762 (1977).

³⁾ C. P. Kubiak und R. Eisenberg, J. Am. Chem. Soc. **102**, 3637 (1980); M. Cowie und S. K. Dwight, ebenda **102**, 2500 (1980); L. S. Brenner und A. C. Balch, ebenda **100**, 6099 (1978); C. P. Kubiak und R. Eisenberg, Inorg. Chem. **19**, 2726 (1980); M. P. Brown, J. R. Fisher, R. J. Puddephatt und K. R. Seddon, ebenda **18**, 2888 (1979); R. G. Holloway, B. R. Penfold, R. Colton und M. J. McCormick, J. Chem. Soc., Chem. Commun. **1976**, 485.

⁴⁾ H. H. Karsch und B. Milewski-Mahrla, Angew. Chem. 93, 825 (1981); Angew. Chem., Int. Ed. Engl. 20, 814 (1981).

⁵⁾ H. H. Karsch und U. Schubert, Z. Naturforsch., Teil B 37, 186 (1982).

- ⁶⁾ K. Issleib, H.-P. Abicht und H. Winkelmann, Z. Anorg. Allg. Chem. 388, 89 (1972); H. Schmidbaur, J. R. Mandl, J.-M. Bassett, G. Blaschke und B. Zimmer-Gasser, Chem. Ber. 114, 433 (1981); C. E. Briant, K. P. Hall und D. M. P. Mingos, J. Organomet. Chem. 229, C5 (1982); S. Al-Jibori und B. L. Shaw, J. Chem. Soc., Chem. Commun. 1982, 826; J. Browning, G. W. Bushnell und K. R. Dixon, J. Organomet. Chem. 198, C11 (1980); J.-M. Bassett, J. R. Mandl und H. Schmidbaur, Chem. Ber. 113, 1145 (1980); J. W.A. van der Velden, F.A. Vol-lenbroek, J. J. Bour, P. T. Beurskens, J. M. M. Smits und W. P. Bosman, Rec. Trav. Chim. Pays-Bas 100, 148 (1981).
- ⁷⁾ H. H. Karsch, Angew. Chem. 94, 322 (1982); Angew. Chem., Int. Ed. Engl. 21, 311 (1982); H. H. Karsch und D. Neugebauer, Angew. Chem. 94, 322 (1982); Angew. Chem., Int. Ed. Engl. 21, 312 (1982).
- ⁸⁾ H. H. Karsch, Publikation in Vorbereitung.
- ⁹⁾ H. H. Karsch, Chem. Ber. 116, 1656 (1983), nachstehend.
- ¹⁰⁾ J. M. Jenkins, J. R. Moss und B. L. Shaw, J. Chem. Soc. A 1969, 2796.
- ¹¹⁾ R. Mathieu, M. Lenzi und R. Poilblanc, Inorg. Chem. 9, 2030 (1970).
- 12) J. M. Jenkins und J. G. Verkade, Inorg. Chem. 6, 2250 (1967).
- 13) S. O. Grim und J. D. Mitchell, Inorg. Chem. 16, 1770 (1977).
- 14) J. Chatt und H. R. Watson, J. Organomet. Chem. 156, 389 (1978).
- ¹⁵⁾ C. A. Tolman, Chem. Rev. 77, 313 (1977).
- ¹⁶ H. H. Karsch, H.-F. Klein und H. Schmidbaur, Chem. Ber. 110, 2200 (1977); T. V. Harris, J. W. Rathke und E. L. Muetterties, J. Am. Chem. Soc. 100, 6966 (1978); H. H. Karsch, Inorg. Synth. 20, 59 (1980).
- ¹⁷⁾ Über diese Reaktion haben wir in einer Kurzmitteilung bereits berichtet⁷⁾.
- ¹⁸⁾ S. D. Ittel, C. A. Tolman, A. D. English und J. P. Jesson, J. Am. Chem. Soc. 98, 6073 (1976); C. A. Tolman, S. D. Ittel, A. D. English und J. P. Jesson, ebenda 100, 4080 (1978); S. D. Ittel, C. A. Tolman, P. J. Krusic, A. D. English und J. P. Jesson, Inorg. Chem. 17, 3432 (1978).
- 19) F. L. Bowden und D. J. Johnson, zitiert in F. L. Bowden und L. H. Wood, Compounds with Iron-Carbon-Bonds in The Organic Chemistry of Iron, Vol. 1, p. 358, Hrsg. E. A. Koerner von Gustorf, F.-W. Grevels und I. Fischer, Academic Press, New York 1978.
- ²⁰⁾ S. D. Ittel, C. A. Tolman, A. D. English und J. P. Jesson, J. Am. Chem. Soc. 100, 7577 (1978); C. A. Tolman, S. D. Ittel, A. D. English und J. P. Jesson, ebenda 101, 1742 (1979).
- ²¹⁾ H.-F. Klein und H. H. Karsch, Inorg. Chem. 14, 473 (1975).
- ²²⁾ H. H. Karsch, Chem. Ber. 115, 1956 (1982).
- ²³⁾ P. F. Maier, H. E. Merbach, M. Dartiguenave und Y. Dartiguenave, Inorg. Chem. 18, 610 (1979).
- 24) Gmelin, Handbuch der Anorganischen Chemie, 8. Aufl., Bd. 57, Tl. C, Lfg. 2, S. 1079, Verlag Chemie, Weinheim/Bergstr. 1969.
- ²⁵⁾ H. H. Karsch, U. Schubert und D. Neugebauer, Angew. Chem. 91, 518 (1979); Angew. Chem., Int. Ed. Engl. 18, 484 (1979); H. H. Karsch, Z. Naturforsch., Teil B 34, 1171 (1979).
- ²⁶ In sterischer Hinsicht ist Me₂PCH₂PMe₂ weit günstiger: Tolmanscher Kegelwinkel¹⁵ für Me₂PCH₂PMe₂: 2 × 102° = 204°, für 2 PMe₃: 2 × 118° = 236°. (Wenn auch der absolute Wert in Frage gestellt werden kann, wird die relative Abstufung doch wohl in etwa richtig wiedergegeben.)
- ²⁷⁾ (Me₃P)₃Fe(CO)₂ ist beispielsweise bis 100 °C fluktuierend ¹⁶⁾, vgl. auch Lit. ¹⁸⁾.
- ²⁸⁾ R. K. Harris, Can. J. Chem. 42, 2275 (1964).
- ^{29) 13}C₁⁽¹H)-NMR-Spektrum von 8 (CD₃OD, +30 °C, TMS ext): δ PCH₃ = +16.69 t (N = 14.6, AA'X-Spinsystem), δ PCH₂ = +37.56 t (¹J(PC) = 17.1). ³⁰⁾ J. S. Wood, Prog. Inorg. Chem. 16, 227 (1972) und zit. Lit.; P. Meakin und J. P. Jesson, J.
- Am. Chem. Soc. 96, 5751 (1974) und zit. Lit.
- ³¹⁾ P. E. Garrou, Chem. Rev. 81, 229 (1981).

[264/82]